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Abstract

In order to increase the accuracy of serial-propagated long-range multi-step-ahead
(MSA) prediction, which has high practical value but also great difficulty to conduct be-
cause of huge error accumulation, a novel wavelet-NN hybrid model CDW-NN, combin-
ing continuous and discrete wavelet transforms (CWT and DWT) and neural networks5

(NN), is designed as the MSA predictor for effective long-term forecast of hydrological
signals. By the application of 12 types of hybrid and pure models in estuarine 1096 day
river stage series forecasting, different forecast performances and the superiorities of
CDW-NN model with corresponding driving mechanisms are discussed, and one type
of CDW-NN model (CDW-NF), which uses Neuro-Fuzzy as the forecast submodel, has10

been proven to be the most effective MSA predictor for the accuracy enhancement in
the overall 1096 days long-term forecast. The special superiority of CDW-NF model lies
in the CWT based methodology, which determines the 15 and 28 day prior data series
as model inputs by revealing the significant short-time periodicities involved in estu-
arine river stage signals. Comparing conventional single-step-ahead based long-term15

forecast models, the CWT based hybrid models broaden the prediction range in each
forecast step from 1 day to 15 days, thus reduce the overall forecasting iteration steps
from 1096 steps to 74 steps and finally creates significant decrease of error accumu-
lations. In addition, combination of the advantages of DWT method and Neuro-Fuzzy
system also very benefit filtering the noisy dynamics for model inputs and enhancing20

the simulation and forecast ability of the complex hydro-system.

1 Introduction

Hydrological signal forecasts, especially a long-term forecast, are important for the
study and guidance of water resource management. Nevertheless, hydrological signals
are highly complex nonlinear systems and have severe variations in time and space,25

which make accurate forecasts difficult. Generally, the hydrological time series are pre-
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dicted with models based on physical considerations or other numerical theories, such
as LR (linear regressive) analysis methods (Salas et al., 1980) based on stochastic
theory; grey models (Deng, 1992) based on grey information theory; chaos models
(Jayawardena and Lai, 1994; Islam and Sivakumar, 2002) based on a local similarity
of signals; fuzzy prediction models (Jang, 1993; Jang et al., 1997; Chen, 2005) based5

on fuzzy theory; TAR (threshold auto-regression), BL (bilinear time series), and SVM
(Support Vector Machine) models (Tong, 1990; Jin and Ding, 2002; Liong and Sivapra-
gasm, 2002; Zou et al., 2010) based on nonlinear time series analysis; ANN (artificial
neural networks) models (Raman and Sunlikumar, 1995; Yu et al., 2008; Yang et al.,
2009) based on black-box theory; and NNB (nearest neighbour bootstrapping) regres-10

sive models (Wang et al., 2001) based on nonparametric prediction theory. However,
these models are generally not successful enough in producing accurate predictions
due to some inaccurate initial conditions, parameterisation schemes of sub-scale phe-
nomena, and limited spatial resolution (Olson et al., 1995).

Many hybrid models have been proposed as predictors to improve the accuracy of15

hydrological time series forecasts, such as the wavelet-ANN model (Anctil and Tape,
2004), the periodic ANN (PANN) model (Wang et al., 2006), the chaotic-ANN model
(Karunasinghe and Liong, 2006), the wavelet-based grey model (Chou, 2007), the
wavelet-based NF (Neuro-Fuzzy) model (Partal and Kisi, 2007; Engin et al., 2007;
El-Shafie et al., 2007), the non-supervised ANN-EA (evolutionary algorithms) model20

(Cao and Park, 2007; Chang et al., 2007), the fuzzy-SVM model (Hua et al., 2008), the
wavelet-based multi-layer perceptron model (Kisi, 2008), and the wavelet-regression
(WR) model (Kisi, 2011). These hybrid models have shown different advantages for
accurate predictions due to their capabilities of utilising present information effectively.
Among these hybrid models, the neural network (NN) models, such as NF (Neuro-25

Fuzzy) and ANN, are the most popularly utilised sub-models for signal forecast due to
their capabilities of effectively learning complex and nonlinear relationships (Maier et
al., 2010). The ANN model has been popularly used in hydrological signal forecasts in
recent years by a number of researchers (French et al., 1992; Jain et al., 1999; ASCE,
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2000; Cigizoglu, 2005; Marzano et al., 2006; Zou et al., 2010). The NF model has been
successfully used in the hydrological sciences in recent years (Nayak et al., 2004; Kisi,
2005; Chang and Chang, 2006). In addition, the wavelet transform is a strong math-
ematical tool that provides a good local representation of the signal in both the time
and frequency domains, and it has become a useful method for analysing variations,5

periodicities, and trends in time series (Daubechies, 1994; Torrence and Compo, 1998;
Coulibaly and Burn, 2004; Partal and Kucuk, 2006). Among the various types of wavelet
transforms, the discrete wavelet transform (DWT) as the data preprocessing method in
a hybrid model is popularly used to decompose the original signal input due to its ca-
pabilities of effectively classifying a hydro-meteorological time series into distinct time10

and frequency domains (Smith et al., 1998; Kim and Valdes, 2003; Labat, 2005).
Because of the common Markovian property (Bolch et al., 2006) embedded in hydro-

meteorological time series, most recent pure and hybrid models use data series at dif-
ferent previous time points as model inputs to forecast the original data series at the
current time point. For daily time series, the data series from one day prior to a few days15

prior are usually used as model inputs, namely using data series St−1, St−2, . . . as in-
puts, to forecast St. The data series at one day prior is always selected as one of the
inputs because of the usually high lag-1 autocorrelation (Kisi, 2008, 2011; Zhou et al.,
2008). This selection principle denotes a type of popular used single-step-ahead (SSA)
prediction (Parlos et al., 2000), in which each single forecasting step of the Markovian20

property-based model can only predict the next one-day datum (Fig. 1a). However, SSA
prediction may not provide enough information, especially in the situation in which it is
desirable to understand the behaviour of multiple steps in the future, such as signal
processing and time series prediction. Given this issue, the serial-propagated multi-
step-ahead (MSA) prediction (Fig. 1b), which attempts to make predictions several25

time steps into the future without the availability of output measurements, has attracted
an increasing number of scientific studies (Su et al., 1992; Schenker and Agarwal,
1995; Coulibaly et al., 2000; Gao et al., 2002; Chang et al., 2007, 2012; Yong et al.,
2010). However, MSA predictors are difficult to develop because the lack of measure-
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ments in the prediction horizon necessitates the recursive use of SSA predictors to
reach the end-point on the horizon, especially difficult for a long-range MSA predictor
design. Even small SSA prediction errors at the beginning of the horizon accumulate
and propagate, often resulting in a poor prediction accuracy. Over the last twenty years,
MSA predictor design to increase the MSA prediction accuracy has received much at-5

tention, and different types of neural networks have been used successfully for some
short-range MSA predictions (Su et al., 1992; Parlos, et al., 2000; Chang et al., 2007).

As mentioned above, the crucial and most difficult point in a long-term forecast of
hydrological signal is the development of effective models to reduce the error accumu-
lation and increase the accuracy of the long-range serial-propagated MSA prediction.10

In view of this, the present study designed a novel hybrid model CDW-NN, combining
continuous and discrete wavelet transforms and neural networks, as MSA predictor for
effective long-term forecast of hydrological signals by broadening the prediction range
in each forecast step and reducing the total iteration steps in the long-term forecasting
process. In the remainder of this paper, the long-term forecast methodologies of the15

MSA predictor CDW-NN are presented. In the next section, the details of daily river
stage data series in different hydro-stations in Yangtze River Estuary, China are pre-
sented and CDW-NN hybrid models are applied to the long-term forecasts of different
river stage signals. The results are discussed by comparing with the performances of
other pure and hybrid models in the subsequent section, and finally, conclusions are20

drawn.

2 Methodologies

2.1 Continuous wavelet transform (CWT) and discrete wavelet transform (DWT)

Wavelet transform is a mathematical tool that allows the decomposition of the sig-
nal f (t) in terms of elementary contributions called wavelets (Sadowskey, 1996; Labat25

et al., 2005). For the time series f (t) ∈ L2(R) or finite energy signal, the continuous
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wavelet transform (CWT) of the signal f (t) with the analysing wavelet φ is the convolu-
tion of f (t) with a set of dilated and translated wavelets:

Wf (a,b) =
〈
f (t),ϕa,b(t)

〉
=

√
δt
a

∫
R

f (t)ϕ
(
t−b
a

)
dt,a,b ∈ R,a > 0 (1)

where φ(t) is the complex conjugate function of φ(t), a is the dilation (scale or fre-
quency) parameter, b is the translation (position or time) parameter, R is the domain5

of real numbers, and δt is the time interval of the data series. In this paper, the time
interval of the data series equals 1.0 day, and the popularly used Morlet wavelet is se-
lected as φ (Mallat, 1989; Daubechies, 1994; Torrence and Compo, 1998). The Morlet
wavelet, which is a complex wavelet consisting of a plane wave modulated by a Gaus-
sian function, is defined by:10

φ(t) = π−1/4eiω0te(−t2/2) (2)

where ω0 is the non-dimensional frequency (usually taken to be 6 to satisfy the admis-
sibility condition) (Farge, 1992).

The global wavelet power spectrum is defined as the power density at different time
scale a, which is calculated by:15

Ea =
1
N

N∑
b=1

|Wf (a,b)|2 (3)

where N is the length of the data. The signal’s periodicity can be indicated at the time
scale at which the wave crest of wavelet power spectrum is observed. The significance
of the global wavelet power spectrum is tested using a white or red noise model by
compared with the theoretical global wavelet power spectrum (P ). P is given as (Tor-20

rence and Compo, 1998):

P = σ2Pa
x2
v (p)

v
(4)
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where σ2 is the variance of data series, x2
v (p) is the inverse of chi-square cumulative

distribution with v degrees of freedom at the requested confidence level 1−p, and p
is the distribution fraction. For the lag-1 autocorrelation, r(1) < 0.1Pa is the white noise
spectrum, and for r(1) > 0.1,Pa is the red noise spectrum. For the Morlet wavelet, Pa is
given as Eq. (5), and v is given as Eq. (6). In this study, a significance level of 0.0055

was selected, e.g., χ2
2 (99.5%) = 10.597.

Pa =
1− r(1)2

1+ r(1)2 −2r(1)cos
( 2πδt

1.033a

) (5)

v = 2

√
1+

(
Nδt

2.32a

)2

(6)

The continuous wavelet (Eq. 1) is often discrete in real applications. When a = aj0,10

b = kb0a
j
0, a0 > 1, b0 ∈ R, and k and j are integer numbers, the Discrete Wavelet

Transform (DWT) of f (t) can be written as:

Wf (j ,k) =
1√
aj0

∫
R

f (t)φ
(
a−j0 t−kb0

)
dt (7)

Based on the commonly used Mallat algorithm for calculating discrete wavelet coeffi-
cients, the most common and simplest choice for the parameters a0 and b0 is 2 and 115

time steps, respectively, and the Daubechies wavelet, which has no explicit mathemat-
ical expressions and can be calculated only numerically, is commonly used in the DWT
(Mallat, 1989; Daubechies, 1994; Partal and Kucuk, 2006; Kisi, 2011). For a discrete
time series f (t) occurring at different times t (e.g., integer time steps are used herein),
the DWT can be defined as:20

Wf (j ,k) =
1

√
2j

N−1∑
t=0

f (t)φ(2−j t−k) (8)
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where N is the number of discrete time steps and Wf (j , k) is the wavelet coefficient for
the discrete wavelet of scale a = 2j and time b = 2jk.

2.2 Neuro-Fuzzy (NF) and BP-ANN

The popular neural network (NN) model Neuro-Fuzzy (NF), based on the Adaptive
Neuro-Fuzzy Inference System (ANFIS) (Jang et al., 1997; Partal and Kisi, 2007), is5

utilised as the sub-model for the different hydro-meteorological signals forecast in this
paper. ANFIS, first introduced by Jang (1993), is a universal approximator and, as
such, is capable of approximating any real continuous function on a compact set to any
degree of accuracy. The ANFIS is functionally equivalent to the Sugeno first-order fuzzy
model (Jang et al., 1997; Drake, 2000), and its typical architecture with five learning10

layers is shown in Fig. 2. As mentioned by Jang et al. (1993), Partal and Kisi (2007), and
Engin et al. (2007), two types of bell-shaped functions are generally used as transfer
function in Layer 1 of the ANFIS architecture. The significant advantage of the NF
model depends on the hybrid learning algorithm in ANFIS, which combines gradient
descent, back-propagation, and the least-squares method and can rapidly train and15

adapt the ANFIS. Each learning epoch of the ANFIS is composed of a forward pass
and a backward pass, and more information for Neuro-Fuzzy and ANFIS can be found
in Jang’s papers (Jang, 1993; Jang et al., 1997).

Another popular NN model, BP-ANN (back-propagation artificial neural networks), is
utilised in our case to compare the forecast performance with the NF model. Based on20

the back-propagation algorithm, a common three-layer feed-forward type of BP-ANN
is considered, the Levenberg–Marquardt methodology, which is more powerful than
conventional gradient descent techniques (Hagan and Menhaj, 1994; Kisi, 2011), to
adjust the weights of the ANN model, and the Tangent Sigmoid and linear activation
functions are used for the hidden and output node(s), respectively. Because there is no25

theory yet to determine how many hidden layer nodes in the BP-ANN are needed to
approximate any given function, the hidden layer node number in BP-ANN is commonly
determined by the trial and error approach.
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2.3 Architecture of the long-term forecasting based on the MSA predictor CDW-
NN

In order to reduce the error accumulation and increase the accuracy of the long-range
serial-propagated MSA prediction, the present study designed a novel hybrid model
CDW-NN, combining CWT, DWT, and NN, as MSA predictor for effective long-term5

forecast of hydrological signals. The architecture of CDW-NN hybrid model was shown
in Fig. 3. Firstly, for the original given daily data series x(1) ∼ x(t), the CWT method
was utilized to reveal its short-term periodicities, i.e. periods at a1 ∼ ai days in Fig. 3
(a1 < a2 < .. . < ai ). Meanwhile, decomposition of the original signal DWT was con-
ducted to get new data series TD(1) ∼ TD(t), which was constructed by selecting and10

combining optimal DWT decomposition components. Then, by combining the CWT and
DWT results, the new TD series at a1 ∼ ai days ahead (TD(t−a1) ∼ TD(t−ai )) were
selected as NN model inputs for model training to forecast the datum x(t). According to
the serial-propagated prediction principle, using TD(t−a1+1) ∼ TD(t−ai+1) as model
inputs can predict the first future day datum y(t+1), and using TD(t) ∼ TD(t−ai +a1)15

as inputs can predict y(t+a1). Here, the first batch of outputs y(t+1) ∼ y(t+a1) are
predicted from the first forecasting step, and then can be used as new observations for
the second step DWT decomposing and NN forecasting to predict the second batch of
outputs y(t+a1+1) ∼ y(t+2a1). Just as the one day prediction from each SSA forecast
involved in conventional MSA forecast, the day number of predictions in the output of20

each CDW-NN forecasting step is a1. So, after about n/a1 steps of forecasting pro-
cess, the final long-term prediction series y(t+1) ∼ y(t+n) can be obtained.
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3 Application

3.1 Studied area and data

The hightide level data at two time points each day during 13 yr (4748 days) covering
1998–2010, supported by the Water Resources Department of Jiangsu Province, were
observed and collected from estuarine Santiao Port Hydrologic Station (31.721◦ N,5

121.698◦ E) and Qinglong Port Hydrologic Station (31.862◦ N, 121.239◦ E), which re-
spectively locate about 19.0 km and 70.0 km upstream from Chinese Yangtze River
entrance into East China Sea (Fig. 4). The daily river stage data series at each sta-
tion was obtained based on the average value of hightide levels at two time points
each day. The first 10 yr of river stage data (3652 days) was used for training and es-10

tablishing hybrid models, i.e. t = 3652 in Fig. 3. The remaining 3 years of river stage
data (1096 days) was used for testing the long-term forecasting performance of hybrid
models, i.e. n = 1096 in Fig. 3.

3.2 Short-term periodic features of estuarine daily river stage series

Morlet wavelet transform coefficients of the training data series at relatively fine time15

scales (from one day to fifty days scales) were calculated by MATLAB language. The
real parts of Morlet wavelet transform coefficients at Santiao Station (Fig. 2a) and Qin-
glong Station (Fig. 2c) clearly indicated the distribution conditions of the river stage sig-
nals for different time scales. The solid isograms indicate positive wavelet coefficients
and a relatively high river stage period, and the dashed isograms indicate negative co-20

efficients and a relatively low period. Further calculating the global wavelet power spec-
trums and the corresponding theoretical power spectrums using white noise model,
the significances of wavelet power densities of daily river stage series at different time
scales at Santiao and Qinglong Stations were calculated and shown in Fig. 2b and d.

Results showed that the Morlet wavelet transform coefficients of daily river stage25

series at Santiao Station generated obvious two kinds of quasi periodic oscillations
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(QPOs), namely at 12 day and 23 day time scales, and both of their global wavelet
power spectrums were prominent at the 99.5 % confidence level. The QPO of estuar-
ine daily river stage at a fine time scale was often nested in a broad time scale. At the
12 day time scale, the average changing periodicity (T ) of river stage time series was
15 days obtained by calculating and averaging the day numbers of each two neighbor-5

ing high and low river stage periods. At the 23 day scale, the average T was 28 years.
At Qinglong Station, the Morlet wavelet transform coefficients of daily river stage series
generated obvious two QPOs at 12 day and 22 day time scales, of which corresponding
T were 15 days and 28 days same as that at Santiao Station, and both of their global
wavelet power spectrums were prominent at the 99.5 % confidence level. Based on the10

prominent short-term periodic features of estuarine daily river stage time series, estu-
arine daily river stage at 15 day prior and 28 day prior were determined to simulate and
forecast the river stage at the current day, i.e. a1 and a2 in Fig. 3 equaled 15 and 28
respectively.

3.3 Decomposition of daily river stage time series and optimal DWT15

components combination

The decomposition process of DWT consists of a number of filtering steps following the
Mallat algorithm. The original signal of training data series is first decomposed into an
approximation (A1) and details (D1), and the A1 is then broken down into many lower-
resolution components (Ai and Di ). The details are the low-scale high-frequency com-20

ponents of the signal, while the approximations are the high-scale low-frequency com-
ponents. The higher scales consist of the extended version of a wavelet, and the cor-
responding coefficients refer to the slowly changing coarse features of low-frequency
components. The lower scales present the condensed wavelet and follow the rapidly
changing details (high frequency components) of the signal (Mallat, 1989). In our case,25

ten decomposition components (A10, D1–D10) of the original daily river stage signal
(1998–2007) in ten resolution levels were calculated by MATLAB language, and were
used to analyze the optimum input factors in our hybrid model.
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The correlation coefficients (R) between each discrete wavelet component (A10,
D1 −D10) at 15 day and 28 day prior (t−15 and t−28) and original time series at time
t(St) were computed and presented in Table 1. By single factor and double factors
analysis, at both Santiao and Qinglong Stations the D3, D4 and D8 components at
15 day and 28 day prior showed prominently higher R with St than the other DWT com-5

ponents, especially significant in double factors analysis. Instead of using each DWT
component individually as the model input, employment of the added suitable DWT
components is more useful and can highly increase the forecast performance. Based
on the revealed dominant DWT components of different hydrological series, the new
series (TD) obtained by adding D3, D4 and D8 at 15 day and 28 day prior were selected10

as two NN model inputs for the daily river stage forecast at both Santiao and Qinglong
Stations. Comparing each DWT component with the original series (S), the new se-
ries (TD) showed significantly higher correlations at both 15 day and 28 day delay time
nodes with St.

3.4 CDW-NN model training and a long-term forecasting of daily river stage15

signal

According to the above CWT and DWT results, two new daily series TD(1) ∼ TD(t−28)
and TD(14) ∼ TD(t−15) extracted from the training data series were used as NN model
inputs to simulate and forecast the original series x(29) ∼ x(t). Program codes were
written in MATLAB language for training the Neuro-Fuzzy and BP-ANN submodels20

and determine their optimal model structures. At Santiao Station, by many trials the
optimal CDW-ANN hybrid model structure was determined as CDW-ANN(2-3-1), which
denotes two input layer nodes, three hidden layer nodes and one output layer node
in BP-ANN submodel. At Qinglong Station the optimal CDW-ANN(2-4-1) model was
obtained. When the training programs of NN submodels were done, two TD series25

TD(t−27) ∼ TD(t−13) and TD(t−14) ∼ TD(t) were used as model inputs to forecast
the future 15 days river stage series y(t+1) ∼ y(t+15), i.e. the first forecasting step in
Fig. 3. The predicted 15 day river stage series was then treated by DWT and used as
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new inputs to forecast the next 15 days river stage in the next forecasting step. Because
each single step forecasting using CDW-NN model obtained 15 days predictions, the
total 1096 days future river stage values from 2008–2010 were predicted after 74 steps
of forecasting.

The root mean square errors (RMSE), mean absolute errors (MAE) and correlation5

coefficient (R) statistics were used to evaluate the model performance of simulation
and prediction. The RMSE and MAE are defined as:

RMSE =

√√√√1
n

n∑
i=1

(Y iobserved − Y iestimate)2 (9)

MAE =
1
n

n∑
i=1

|Y iobserved − Y iestimate| (10)
10

where n is the number of data sets, and Y i is the daily river stage.
The forecast performances of CDW-NF and CDW-ANN models at Santiao and Qin-

glong Stations were shown in Fig. 4. Results showed that the CDW-NF models per-
formed significantly better correlations between observed and predicted river stage
data during 2008–2010 with the higher R of 0.533 and 0.283 at Santiao and Qing-15

long Stations respectively, while CDW-ANN with the lower R of −0.142 and 0.172 at
Santiao and Qinglong Stations respectively. And the CDW-ANN hybrid model showed
better forecast performances during the first year than that in the last two years.

4 Discussion

4.1 Forecast performances comparison between CDW-NN models and the other20

10 types of hybrid and pure models

Similar to the establishing process of CDW-NN models, the hybrid CDW-LR model was
established by combining CWT, DWT and a linear regression (LR) model. Using the

9251

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/9239/2013/hessd-10-9239-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/9239/2013/hessd-10-9239-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 9239–9269, 2013

Effective long-term
forecast of

hydrological signals

J.-S. Yang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

training data series, simulating equations of the hybrid models (CDW-LR) at Santiao
Station and Qinglong Station were obtained and shown as Eqs. (11) and (12) respec-
tively. Without the DWT treatment, three other CWT based (CW-) hybrid models were
established by using the original daily river stage series at 15 day and 28 day previous
(St−15 and St−28) as input factors to simulate St. By model training, the optimal CW-5

ANN structures for Santiao and Qinglong Stations were determined as CW-ANN(2-3-
1) and CW-ANN(2-1-1) respectively, and the CW-LR models for Santiao and Qinglong
Stations were obtained and showed as Eqs. (13) and (14) respectively.

St = 0.454TDt−28 +0.533TDt−15 +3.966 (11)

St = 0.496TDt−28 +0.487TDt−15 +4.004 (12)10

St = 0.428St−28 +0.493St−15 +0.315 (13)

St = 0.473St−28 +0.460St−15 +0.266 (14)

As mentioned in Fig. 1, many conventional studies on MSA predictor design focused
on the methodology of recursive use of SSA predictors, e.g. generally using St−1 and15

St−2 as model inputs to forecast St. In view of this, 6 types of conventional SSA based
long-term forecast hybrid and pure models were established for comparing with the
CWT based hybrid models. Among the 6 types of models, DW-R, DW-ANN and DW-NF
hybrid models utilized the optimum decomposition components combinations (TDt−1
and TDt−2), determined by DWT, as model inputs to forecast St. With respect to the20

pure LR, BP-ANN and Neuro-Fuzzy models, the original daily river stage series at
1 day prior and 2 day prior (St−1 and St−2) were used as model inputs to forecast St.
By model training, the optimal DW-ANN structures for daily river stage forecasts at
Santiao and Qinglong Stations were determined as DW-ANN(2-5-1) and DW-ANN(2-7-
1) respectively, and the optimal structures of pure BP-ANN models for daily river stage25

forecasts at Santiao and Qinglong Stations were determined as BP-ANN(2-3-1) and
BP-ANN(2-5-1) respectively. The DW-LR models for Santiao and Qinglong Stations
were obtained and shown as Eqs. (15) and (16) respectively, and the pure LR models
for Santiao and Qinglong Stations were obtained and shown as Eqs. (17) and (18)
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respectively.

St = −0.973TDt−2 +1.818TDt−1 +3.966 (15)

St = −0.971TDt−2 +1.826TDt−1 +4.005 (16)

St = −0.316St−2 +1.124St−1 +0.761 (17)

St = −0.397St−2 +1.234St−1 +0.649 (18)5

As shown in Table 2, the training and forecasting performances of 12 types of hybrid
and pure models were compared with each other in respect to RMSE, MAE and R
statistics. Due to the high lag-1 and lag-2 autocorrelations in hydrological time series, in
the training periods the 6 types of conventional SSA based long-term forecast models10

performed better than the 6 types of CWT based hybrid models with higher R and
smaller RMSE and MAE. Nevertheless, in the test periods, without the observation data
as model inputs in each forecasting step, the CDW-NF hybrid model showed significant
performances among all the 12 models, especially prominent at Santiao Station. In
addition, due to the prominent ability of decomposition approach based on DWT in15

filtering weak correlated details from original signal, each DWT based hybrid model
performed better than its corresponding model without DWT both in training and test
periods.

4.2 Driving mechanism of advantages of the CDW-NN models on long-range
MSA predictions20

Prediction performance details in respect to R for the 12 types of hybrid and pure mod-
els at different forecasting steps during the overall 1096 day river stages forecasting
were calculated and shown in Fig. 7. According to the serial-propagated MSA pre-
diction theory, the error accumulation increases with the iteration steps increase in
a long-term forecast. Therefore, the prediction performances of all 12 types of models25

had overall decreasing trends with the increasing of predicted data length to 1096 days.
Nevertheless, during approximately the first 200days ∼ 600days river stage forecasting
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all the 6 types of CWT based hybrid models performed better than the other 6 types of
SSA based models. In particular, at Santiao Station the CDW-NF model showed signif-
icantly better performance than the other models covering the overall 3 yr (1096 days)
river stage forecasting steps. With respect to the approximately last 500 days river
stage forecasting at Qinglong Station, the CDW-NF model shared better performances5

with the 3 types of SSA based DW-hybrid models than the other models. The main
explanations are that the CWT based models reduce the overall forecasting iteration
steps to 74 steps by using the 15 day prior data series as the first model input, while the
conventional SSA based models needs 1096 steps by using 1 day prior data series as
the first model input. The prominent decrease of forecasting steps consequently brings10

significant reduction of error accumulation in the long-range MSA prediction. In addi-
tion, the combination of the advantages of the DWT method and Neuro-Fuzzy system
also benefits weakening the noisy dynamics for the model inputs and enhancing the
simulation and forecast ability of the complex hydro-system.

In view of the above discussion, the CDW-NF hybrid model is proven as an effective15

MAS predictor for long-term forecast of estuarine daily river stage signals. In addition,
the CDW-ANN hybrid model can be taken as the second selection for shot-term and
mid-term forecasts of estuarine daily river stage because of its high performance dur-
ing the first year forecast process. It should be noted that the methodology of accurate
MSA predictor design by reducing iteration steps and error accumulation is innovated20

in this study by revealing the short-time periodic features of estuarine river stage dy-
namics, which is mainly caused by the half-month periodicity involved in astronomical
tidal fluctuation in river estuary. With respect to other kinds of hydro-meteorological sig-
nals, which have non-significant short-term periodic features, other kinds of algorithms
and models for reducing error accumulation in long-term forecasting steps need further25

study in future research.
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5 Conclusions

Studies on the long-term forecast of hydrological signals have high practical value, but
the accurate long-range MSA predictor design is very difficult, especially in conven-
tional SSA based MSA predictions, because of the huge error accumulation in serial-
propagated long-term forecast. In this study, we designed a novel hybrid model CDW-5

NN, combining continuous and discrete wavelet transforms and neural networks, as
MSA predictor for effective long-term forecast of hydrological signals. By the applica-
tion of CDW-NN hybrid models and the other 10 types of hybrid and pure models in
estuarine daily river stage series long-term forecasting, the 1096 days estuarine river
stage data were forecasted, and the superiorities of CDW-NN models with correspond-10

ing driving mechanisms were proven as follows:

1. Comparing conventional SSA based models, the CWT based hybrid models
broadened the prediction range in each forecast step from conventional 1 day to
now 15 days and reduced the overall forecasting iteration steps from conventional
1096 steps to now 74 steps by using the 15 and 28 day prior data series as model15

inputs, which was determined by revealing signal’s significant short-time periodic-
ities from CWT. This prominent reduction of forecast steps has created significant
decrease of error accumulations and increase of long-term forecast performances
in the CWT based hybrid models.

2. Among the CWT based models, one type of CDW-NN model (CDW-NF) has been20

proven to be the most effective MSA predictor for the accuracy enhancement in
the overall 1096 days long-term forecast of estuarine hydro-signal. The other type
of CDW-NN model (CDW-ANN) has been proven to be the second selection for
shot-term and mid-term forecasts of estuarine hydro-signal. The main explanation
is the combination of the advantages of the CWT and DWT methods and Neuro-25

Fuzzy system in reducing the error accumulation, filtering weak correlated details
from original signal and weakening the noisy dynamics for the model inputs, and
enhancing the simulation and forecast ability of the complex hydro-system.
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3. It should be noted that because the successful application of the novel CDW-
NF model in hydro-signal long-term forecast largely depends on the significant
short-term periodicities involved in estuarine hydro-signals, some other innova-
tive algorithms and models still need to be further studied in future research for
other kinds of hydro-meteorological signals without significant short-term periodic5

features.
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Table 1. Correlation coefficients between each discrete wavelet component series at 15 day
and 28 day prior (t−15 and t−28) and original river stage data series at the current day (St).

Correlation coefficients (R) with St in Santiao Station Correlation coefficients (R) with St in Qinglong Station

Discrete wavelet
components in ten
resolution levels

Single factor
analysis at t−15

Single factor
analysis at t−28

Double factors
analysis
at t−15 and
t−28

Single factor
analysis at t−15

Single factor
analysis at t−28

Double factors
analysis
at t−15 and
t−28

A10 0.068 0.071 0.071 0.108 0.111 0.111
D1 0.004 −0.017 0.017 0.007 −0.013 0.015
D2 0.059 0.049 0.077 0.017 0.022 0.027
D3 0.656 0.556 0.708 0.632 0.547 0.684
D4 0.259 0.379 0.477 0.227 0.383 0.470
D5 −0.095 0.013 0.097 −0.091 0.011 0.093
D6 0.053 −0.020 0.082 0.054 −0.014 0.080
D7 0.125 0.087 0.137 0.127 0.089 0.138
D8 0.320 0.292 0.333 0.367 0.334 0.382
D9 0.078 0.074 0.082 0.089 0.077 0.116
D10 0.081 0.080 0.084 0.016 0.015 0.026
S = A10 +

∑
Di 0.741 0.714 0.820 0.745 0.747 0.821

TD = D3 +D4 +D8 0.759 0.734 0.825 0.746 0.751 0.836
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Table 2. Comparison among performances of 12 types of river stage forecasting models in
respect to root mean square errors (RMSE), mean absolute errors (MAE) and correlation coef-
ficients (R) in training and test periods.

Santiao Station Qinglong Station

Training period Test period Training period Test period

RMSE MAE R RMSE MAE R RMSE MAE R RMSE MAE R

CDW-NF 0.314 0.250 0.838 0.476 0.381 0.533 0.298 0.234 0.849 0.486 0.396 0.283
CDW-ANN 0.318 0.254 0.834 0.774 0.635 −0.142 0.309 0.244 0.837 0.527 0.430 0.172
CDW-LR 0.325 0.261 0.825 0.562 0.463 0.110 0.309 0.244 0.836 0.499 0.410 0.119
CW-NF 0.316 0.250 0.835 0.622 0.494 0.183 0.309 0.243 0.836 0.602 0.494 −0.005
CW-ANN 0.322 0.255 0.829 0.702 0.568 0.019 0.313 0.247 0.832 0.505 0.409 0.043
CW-LR 0.329 0.262 0.820 0.565 0.463 0.073 0.322 0.255 0.821 0.487 0.397 0.105
DW-NF 0.211 0.166 0.931 0.582 0.480 0.172 0.211 0.169 0.927 0.471 0.384 0.285
DW-ANN 0.214 0.168 0.928 0.568 0.468 0.193 0.214 0.171 0.926 0.474 0.386 0.256
DW-LR 0.225 0.177 0.921 0.554 0.454 0.191 0.226 0.181 0.916 0.492 0.400 0.230
Neuro-Fuzzy 0.263 0.198 0.889 0.558 0.454 0.094 0.223 0.165 0.918 0.526 0.425 0.090
BP-ANN 0.271 0.203 0.883 0.557 0.451 0.128 0.226 0.168 0.916 0.497 0.402 0.094
LR 0.284 0.216 0.870 0.559 0.456 0.115 0.242 0.180 0.903 0.498 0.403 0.110
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Fig. 1. Architecture of the conventional single-step-ahead (SSA) forecast (a) and the SSA
based long-range serial-propagated multi-step-ahead (MSA) forecast (b).1

1

In this paper, Figs. 1–3 were created in MS Office 2003. Figure 4 was created in ArcGIS 9.3.
Figures 5 and 6 were created in MATLAB-R2006b. Figure 7 was created in OriginPro v7.5.
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Fig. 2. Schematic diagram of a typical five-layer ANFIS structure.
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Fig. 3. Architecture of the novel CDW-NN hybrid model.
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Fig. 4. Location map of the hydrological stations.
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Fig. 5. Real parts of Morlet wavelet transform coefficients at Santiao Station (a) and Qinglong
Station (c), and their global wavelet power spectrums and corresponding confidence tests using
white noise models (b, d), based on 3652 daily river stage data during 1998–2007.
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Fig. 6. Observed and predicted values of daily river stages from 2008 to 2010 using CDW-ANN
and CDW-NF hybrid models at Santiao Station (a, b) and Qinglong Station (c, d).
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Fig. 7. Forecast performances in correlation coefficients (R) of 12 types of hybrid and pure
models during 1096 days river stages forecasting at Santiao Station (a) and Qinglong Station
(b).
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